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Abstract. Mobile agents are the latest software technology to program flexible and efficient dis-
tributed applications, since they are independent programs that travel over the network, focusing
on local communication, rather than the usual communication paradigms. Most current systems im-
plement semantics that are hard if not impossible to prove correct. In this paper we present Mob,
a scripting language for web agents encoded on top of a process calculus and with provably sound
semantics that allows interaction with programs written in many programming languages.
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1 Introduction and Motivation

The introduction of the π-calculus [7, 13] and other related process calculi, in the early
nineties, as a model for concurrent distributed systems, provided the theoretical frame-
work upon which researchers could build solid specifications. The main abstractions in
these calculi are processes, representing arbitrary computations and channels, representing
places where processes synchronize and exchange data. Recent extensions of these mod-
els introduced another fundamental abstraction, sites, which denote places in a network
where processes run. These extensions allowed, for the first time, the modeling of complex
distributed systems with mobile resources [2, 6, 10, 12, 17].

The mobile resources supported by these recent extensions are a powerful abstraction
for the development of mobile agent frameworks. Mobile agents add to regular agents the
capability of traveling to multiple locations in the network, by saving their state and restor-
ing it in the new host. As they travel, they work on behalf of the user, such as collecting
information or delivering requests. This mobility greatly enhances the productivity of each
computing element in the network and creates a powerful computing environment, focus-
ing on local interaction. Thus, our mobile agents are independent programs that travel
over the network, focusing in local communication, rather than the usual communication
paradigms (e.g., client-server).

In this paper we present a scripting language, Mob, for programming mobile agents in
distributed environments. The semantics of the language is based on the DiTyCO (Dis-
tributed TYped Concurrent Objects) process calculus [17]. The run-time for the language
is provided by the current implementations of the DiTyCO [11]. In particular, we rely on
it for interprocess communication and code migration over the network.
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The development of mobile agents requires a software infrastructure that provides migra-
tion and communication facilities, among others. Current frameworks that support mobile
agents are mostly implemented by defining a set of Java classes that must then be extended
to implement a given agent behavior, such as Aglets [3], Mole [8], or Klava [9]. Mob, on the
other hand, is a simple scripting language that allows the definition of mobile agents and
their interaction, an approach similar to D’Agents [15]. However, Mob applications may
interact with external services programmed in other languages than Mob. Furthermore,
the language is compiled into a process-calculus based kernel-language, and its semantics
can be formally proved correct relative to the base calculus. Therefore, in this sense, Mob
features some language security. Correctness or type-safety results are difficult to produce
for most of the current systems. For example, only a subset of Java programs can be proved
to be correct and type-safe [14].

The interaction between Mob applications and external services, provided by Mob en-
abled hosts, can be programmed in many languages such as Java, C, TCL or Perl. The
philosophy is similar to that used in the MIME type recognition. The runtime engine
matches a file type against a set of internally known types and either launches the corre-
sponding application or simply executes the code.

The remainder of the paper is structured as follows: section 2 describes the target lan-
guage, TyCO, in which Mob is encoded; section 3 describes the Mob programming lan-
guage; section 4 provides some Mob programming examples; section 5 describes the com-
pilation of a Mob program in TyCO; and finally section 6 describes the on-going research
and future work.

2 The Target Language - DiTyCO

Our target language is based on a process calculus, in the line of the asynchronous π-
calculus, named DiTyCO [17]. The main abstractions of the (centralized) calculus are
channels (communication endpoints), objects (collections of methods that wait for incoming
messages at channels) and asynchronous messages (method invocations targeted to chan-
nels). It is also possible to define process definitions, parameterized on a set of variables,
that may be instantiated anywhere in the program (this allows for unbounded behavior).
The abstract syntax for the core language is the following:

P ::= 0 terminated process
| P | P concurrent composition
| new x P new local variable
| x!l[ṽ] asynchronous message
| x?{l1(x̃1) = P1, . . . , ln(x̃n) = Pn} object
| def X1(x̃1) = P1 . . . Xn(x̃n) = Pn in P definition
| X[ṽ] instantiation
| if v then P else Q conditional execution

where x represents a variable, v a value (a variable or a channel), X a process definition
and, l a method label.

From an operational point of view, centralized DiTyCO computations evolve for two rea-
sons: object-message reduction (i.e., the execution of a method in an object in response to
the reception of a message) and, instantiation of definitions. These actions can be described
more precisely as follows:

x?{. . . , l(x̃) = P, . . . } | x!l[ṽ] → {ṽ/x̃}P
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The message x!l[ṽ] targeted to channel x, invokes the method l in an object x?{. . . , l(x̃) =
P, . . . } at channel x. The result is the body of the method, P , running with the parameters
x̃ substituted by the arguments ṽ. For instantiations we have something very similar.

def . . . X(x̃) = P . . . in X[ṽ] | Q → def . . . X(x̃) = P . . . in {ṽ/x̃}P | Q

A new instance X[ṽ] of the definition X is created. The result is a new process with the
same body, P , as the definition but with the parameters x̃ substituted for the arguments
ṽ given in the instantiation.

This kernel language constitutes a kind of assembly language upon which higher level
programming abstractions can be implemented as derived constructs.

The full, distributed, calculus grows from the centralized version by adding a new layer
of abstraction representing a network of locations, identified by r, s, where processes run.

N ::= 0 terminated network
| N ‖ N concurrent composition
| new x@s N new local variable
| def D@s in N definition
| s[P ] location with running process

This additional layer does not however introduce new reduction operations in the calcu-
lus. In fact, reduction can only be performed locally at locations, either by communications
or instantiations as described above.

As can be observed from the above syntax, all resources are lexically bound to the
locations they are created on. Thus, a message or object located at some channel x@s must
first move to location s to in order to reduce. Similarly, an instantiation of a definition X@s
must move to location s in order to reduce.

To preserve the lexical bindings of resources, every time one moves to another location,
all its free identifiers (references for resources it uses) are translated on-the-fly. This is
represented by a transformation σrs meaning “translation of identifiers when moving from
location r to location s”.

The lexical scope on resources together with the requirement of local reduction induce
the following rules for resource migration:

Message Migration r[x@s!l[ṽ]] → s[x!l[ṽσrs]]
Object Migration r[x@s?M ] → s[x?Mσrs]
Remote Instantiation def X@s(x̃) = P in r[X@s[ṽ]] → def X@s(x̃) = P in s[X[ṽσrs]]

One final word is required on: (a) lexical scope, and; (b) local reduction, since they are
design goals for the language. Lexical scope is an important property since it provides the
compiler and run-time system with important information on the origin of a resource. This
is important namely for safety reasons (e.g., does the resource come from a trusted location
?) and for implementation reasons (e.g., where do we allocate the data-structures for it ?
Do they move around in the network ?).

Local reduction is also of the utmost importance. Client-server interactions for example
occur within a location, with much lower overheads than in the standard Client-Server
model where interactions required maintaining remote sessions open and the exchange of
many messages drastically reducing the available bandwidth of a network. In the novel
paradigms for Web Computing [1], client applications move to server locations where they
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interact with a local session. They return to their original location after the local session
is complete.

The following programming example illustrates the use of these primitives and derived
constructs. We use the (let/in) derived constructs, defined in [16], for synchronous method
calls.

def Cell (self, value) =
self ? {

read (replyto) = replyto![value] | Cell [self, value]
write (newValue) : Cell [self, newValue]

}
in def

IntegerCell(self, value) = Cell [self, value]
StringCell(self, value) = Cell [self, value]

in
new c IntegerCell[c, 4] | let i = c!read[] in io!printi[i]

The general Cell template stores a value and features read and write methods to retrieve
or change its contents. Type specific templates, such as IntegerCell, based on the general
Cell template will be used further on on the paper, to encode values in DiTyCO. In this
example, an IntegerCell is created to store value 4 and the read method is used to retrieve
this value in order to print it to the standard output. Notice that Cell is polymorphic on
value.

3 The Source Language - Mob

The Mob programming language is a simple, easy-to-use, scripting language. Its main
abstractions are mobile agents that can be grouped in communicators allowing hierarchies
to be formed, group communication and synchronization. The abstract syntax for the kernel
of the language is as follows:

Program ::= AgentDef | AgentDef Program | InstructionList | InstructionList Program
AgentDef ::= agent id { AttributeDef Init Do Iterators}

AttributeDef ::= [] | id ; AttributeDef
Init ::= init CodeBlock
Do ::= do CodeBlock

Iterators ::= [] | next CodeBlock previous CodeBlock
CodeBlock ::= Instruction | { InstructionList }

InstructionList ::= [] | Instruction ; InstructionList | Instruction \n InstructionList
Instruction ::= NewComm | NewAgent | Statement | id = Command | Command
NewComm ::= id = communicator StringLiteral | communicator StringLiteral
NewAgent ::= id = agentof id Attributes | agentof id Attributes

The language defines a set of reserved words for constructs and built-in attributes, here
written in boldface.

3.1 The Agent Abstraction

The development of a Mob mobile agent implies two stages: the first (init section) consists
on a setup that runs prior to the agent’s actual execution. Usually it is used to assign
initial values to the agent’s attributes. The second (do section) defines the agent’s behavior
throughout its journey.
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A Mob agent features several built-in attributes: email: email address of the agent’s
owner; owner: identification of the agent’s owner; home: home hosts of the agent; itinerary:
the agent’s itinerary; strategy: definition of a strategy of how the itinerary must be traveled;
and sindex: the index in the itinerary of the current host. Attributes owner, email and
home are read-only, while all the others can be altered during the agent’s execution.

Although Mob features several strategies for traversing the itinerary, namely: list, tree,
circular and scatterjoin, it allows the programmer to define new ones. An agent’s itinerary
is seen as an object that can be managed through two iterators next and previous.

Beside the built-in attributes, an agent may feature as many attributes as the program-
mer wishes. Their usefulness is to hold values to be retrieved when the agent migrates back
home. The following example presents the skeleton of a Mob agent definition, Airline, that
includes a new user-defined attribute, price.

agent Airline {
price;
init { price = 0 }
do { // Implementation of the agent’s actions/behavior }

}

Now that an agent behavior is defined an undetermined number of agents can be created.
The following example creates an agent named airline owned by johndoe and with home
hosts host1 and host2. One can also launch several agents at once using the -n flag. airlineList
will contain the returned list of agent identifiers Notice that the attribute initialization
supplied in the agent constructor will not override the ones in the init section.

airline = agentof Airline -u “johndoe” -h “host1 host2”
airlineList = agentof Airline -n 10 -u “johndoe” -h “host1 host2”

Each agent must be associated to an owner, defined in an entry of the Unix-like file named
passwd. An entry of such a file must contain the user’s login, name, password and group
membership. Following the Unix policy for user management, users may belong to groups
defined in the groups file, sharing their access permissions. Each Mob enabled host must
own both files in order to authenticate each incoming agent. As featured in FTP servers,
an agent can present itself as anonymous for limited access to local resources.

3.2 The Communicator Abstraction

Communicators are conceptually equivalent to MPI communicators [4] and allow group
communication and synchronization. As presented in the grammar, the communicator
construct only requires the list of agents (may be empty) that will start the communicator.
Other agents may join later.

3.3 Instructions

Mob features a rather small but fully functional set of instructions. Most of the statements
included in Mob are common in all scripting languages (for, while, if, foreach and switch),
the only difference lies in the try instruction, a little different from the usual error catching
instructions found in, for instance, TCL. Its syntax is similar to the try/catch exception
handler instruction of Java, allowing specific handling of different types of local run-time
system exceptions. Mob provides instructions to define a mobile agent’s behavior and its
interaction with other agents and external services. These commands can be grouped in
the following main sets:



www.manaraa.com

6

1. agent manipulation: clone.
2. mobility: go.
3. check-pointing: savestate and getstate.
4. inter-agent communication: asynchronous (send, recv, recvfrom), synchronous (bsend,

brecv, brecvfrom), communicator-wide (csend) and multicast (msend). There are vari-
ants of these functions for use with the HTTP and SMTP protocols (e.g., httpcsend;
smtprecv). These variants are useful to bypass firewalls that only allow connections to
ports of regular services.

5. managing communicators: cjoin and cleave.
6. execution of external commands: exec. This functionality allows the execution of com-

mands external to the Mob language. The Mob system features a set of service
providers that enable communication through known protocols, such as HTTP, SMTP,
SQL and FTP. The interaction with these providers is possible through exec’s protocol
flag.

7. input/output: Mob’s input/output instructions are implemented as syntactic sugar for
the exec instruction. open filename could also be written as exec -p fs open filename.

4 Programming with Mob

Now that the language syntax is presented, this section introduces simple Mob program-
ming examples.

We intend to develop two agents: one, airline, capable of querying each host of its itinerary
for the price of one airline ticket from Lisbon to Las Vegas; and a second, hotel, capable of
querying the hosts of its itinerary for a single’s room in a Las Vegas hotel.

In the airline example, the init section will set the itinerary as the first ten results of
a query to a search engine, and price as zero. The actual program starts with a query
to a hypothetical ticketsDB database for the price of the tickets. Note that the syntax of
the query will be defined by the implementation of the ticketsDB server and not by the
language. The execution of exec is protected by a try instruction. If no exception is caught
the program continues and newprice and price are compared, otherwise nothing is done.
Once the end of the program is reached the agent migrates to the next host in its itinerary
(default strategy) and restarts the execution of the program. When all of the itinerary has
been processed, the agent migrates to one of the hosts defined in the home attribute.

In the hotel example, to enhance the efficiency the search is divided among several agents,
all members of a ghotel communicator. This provides group communication to spawn new
cheaper prices among the agents.

In order to avoid a needless search of an hotel if there are no available airline tickets to
Las Vegas, the airline agent can interact with the ghotel communicator through the csend
command, and inform all the agents from ghotel that they can finish their execution and
return home.

agent Airline {
price // declaration of the price attribute
init {

itinerary = exec -p http -n 10 www.search_engine.com “airline company” // query engine for itinerary
price = 0 // initialize price attribute

}
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do {
try { // protect database access with a exception handling mechanism

newprice = exec -p sql ticketsDB ““price” “Lisbon” “Las Vegas”” // query database for ticket price
if (newprice < price || price == 0)

price = newprice
}
catch // exception caught

write log “Could not access database in ” + hostname // cannot access database
if (sindex+1 == [lsize itinerary] && price == 0) // is the search over and no ticket is found?

csend ghotel “stop” // no ticket found, send “stop” message to ghotel communicator
}

}
airline = agentof Airline -u “johndoe” -h “host1 host2” // create a new agent

In this second example, the exec to the search engine is now done outside the agent’s
definition. The result is scattered among the 10 agents launched. Notice that each agent
joins the ghotel communicator in the init section and that all the agents terminate their
execution and return home if they receive the stop message from the airline agent. Also
notice that, every time a cheaper price is found it is spawned to the communicator.

agent Hotel {
price // declaration of the price attribute
init {

strategy = “list” // definition of the agent’s strategy
cjoin ghotel // join the ghotel communicator

}
do {

if ([recvfrom airline] == “stop”) // did the airline agent terminate without finding any tickets?
go -h home// search is over, migrate home

try { // protect database access with a exception handling mechanism
newprice = exec -p sql hotelDB “price” “single room” // query database for hotel room price
if (price < newprice) {

price = newprice
csend ghotel price // spawn new price to the communicator

}
newprice = recv // probe and receive (if any) a new price from the communicator
if (price < newprice)

price = newprice
}
catch // exception caught

exec -p smtp email “Could not access database in ” + hostname // could not access database
}

}
ghotel = communicator// create communicator
list = exec -p http -n 50 www.search_engine.com “hotel Las Vegas” // query search engine
for (i = 0; i < 50; i = i+10)

agentof Hotel -i [lrange list i 10] // create new agents with a sublist of list as the itinerary

5 The Compilation Scheme

In this section we briefly sketch how a Mob program can be encoded into the DiTyCO
language and run-time. Using the airline example, the agent is encoded into a AirlineAgent
extension of the general agent definition Agent. This extension overrides the init and do
methods and introduces a new attribute, price.

The following code illustrates the encoding of the airline agent into DiTyCO. The full
encoding of the Mob language into DiTyCO may be found in [5].
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def AirlineAgent(self, name, . . . , homes, . . . , price) =
self ? {

init() =
{- Encoding of the init section. -}
AirlineAgent[self, name, . . . , homes, . . . , price] |
self!do[]

do() =
{- Encoding of the do section. -}
AirlineAgent[self, name, . . . , homes, . . . , price]

{- all the methods inherited from Agent -}
}

in

The instantiation of the Airline definition in Mob corresponds of an instantiation of the
AirlineAgent definition in DiTyCO. Continuing with the airline example, the following agent
construct

airline = agentof Airline -u “johndoe” -h “host1 host2”

is encoded in the following DiTyCO code.

(1) new var10 StartList[var10] |
new var11 AddToList[var11, “host2”, var10] |
new var1 AddToList[var1, “host1”, var11] |
. . .

(2) new airlineUser StringCell[airlineUser, “johndoe”] |
. . .
new airlineHomes ListCell[airlineHomes, var1] |
. . .
new airlineUserDefined0 IntegerCell[airlineUserDefined0, 0] |

(3) new airline AirlineAgent[airline, airlineUser, . . . , airlineHomes, . . . , airlineUserDefined0] |
airline!init[]

The agentof encoding of the airline agent is divided in three sections: the first (1) is
dedicated to constructing all the lists required by the AirlineAgent definition (e.g., itinerary,
homes, lists for managing incoming and outgoing messages, . . . ); the second (2) for building
Cell objects for each user accessible attributes; and finally (3) creating the airline object
and starting its execution, by invoking its init method.

After this static encoding into DiTyCO the Mob program may be compiled and executed
using the DiTyCO run-time engine.

6 Conclusions and Future Work

Mob is currently under implementation. All the features, excluding external services and
exception mechanisms, are fully encoded in DiTyCO. Future work will focus on the encod-
ing and development of external services, such as, recognition/execution of programs in
several high-level languages, building itineraries through external search engines, database
communication, and network communication through known protocols, such as SMTP,
FTP, or HTTP.

Once the first prototype is ready, case studies will be programmed to provide a base for
discussion of the language’s strong and weak points. Work will also be done in security
(agents and hosts), and in providing an integrated tool for programming, debugging and
monitoring of the agents.
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